

南方科技大学

STA303: Artificial Intelligence

Generalization

Fang Kong

<https://fangkongx.github.io/>

Outline

- Intuition
- Bias-variance tradeoff
- The double descent phenomenon
- Sample complexity bounds

Intuition

Intuition

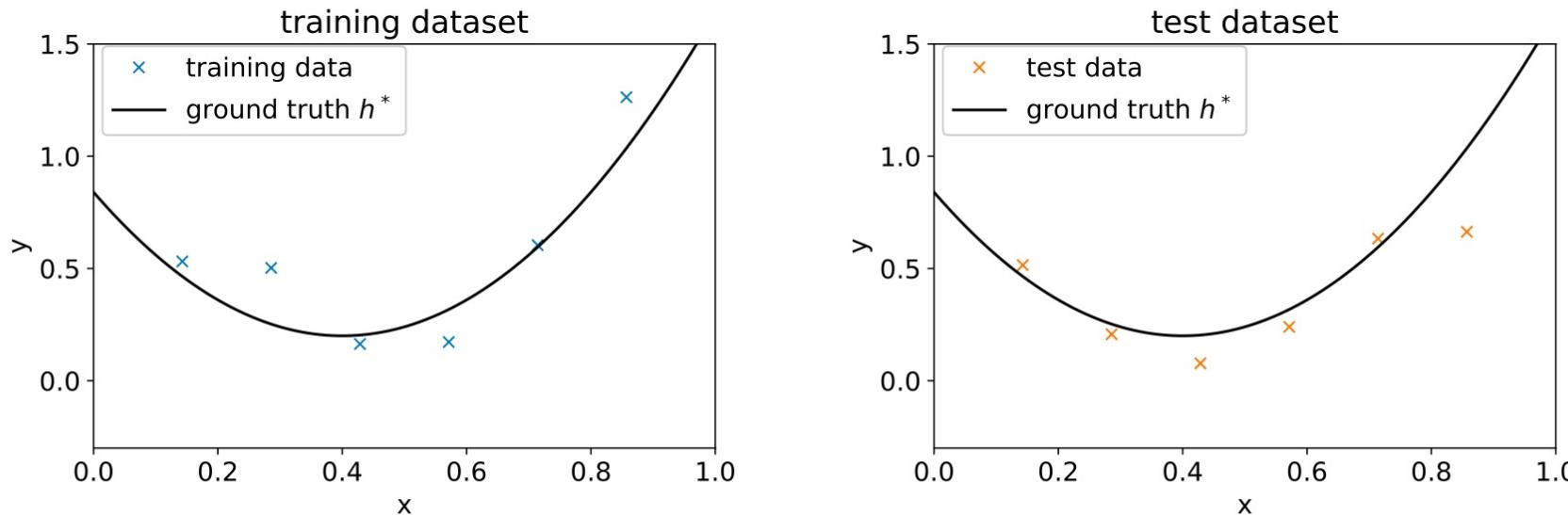
- Recall in previous classes
 - We typically learn a model h_θ by minimizing the training loss/error
 - $J_\theta = \frac{1}{n} \sum_{i=1}^n (h_\theta(x^{(i)}) - y^{(i)})^2$
 - This is not the ultimate goal
- The ultimate goal
 - Sample a test data from the test distribution \mathcal{D}
 - Measure the model's error on the test data (test loss/error)
$$L(\theta) = \mathbb{E}_{(x,y) \sim \mathcal{D}} [(y - h_\theta(x))^2]$$
 - Can be approximated by the average error on many sampled test examples

Challenges

- The test examples are unseen
 - Even though the training set is sampled from the same distribution \mathcal{D} , it can not be guaranteed that the test error is close to the training error
 - Minimizing training error may not lead to a small test error
- Important concepts
 - **Overfitting**: the model predicts accurately on the training dataset but doesn't generalize well to other test examples
 - **Underfitting**: the training error is relatively large (typically the test error is also relatively large)
- How the test error is influenced by the learning procedure, especially the choice of model parameterizations?

Bias-variance tradeoff

Problem setting



- The training inputs are randomly chosen
- The outputs are generated by $y^{(i)} = h^*(x^{(i)}) + \xi^{(i)}$
 - $h^*(\cdot)$: a quadratic function
 - $\xi^{(i)} \sim N(0, \sigma^2)$: noise
- Our goal is to recover the function $h^*(\cdot)$

How about fitting a linear model?

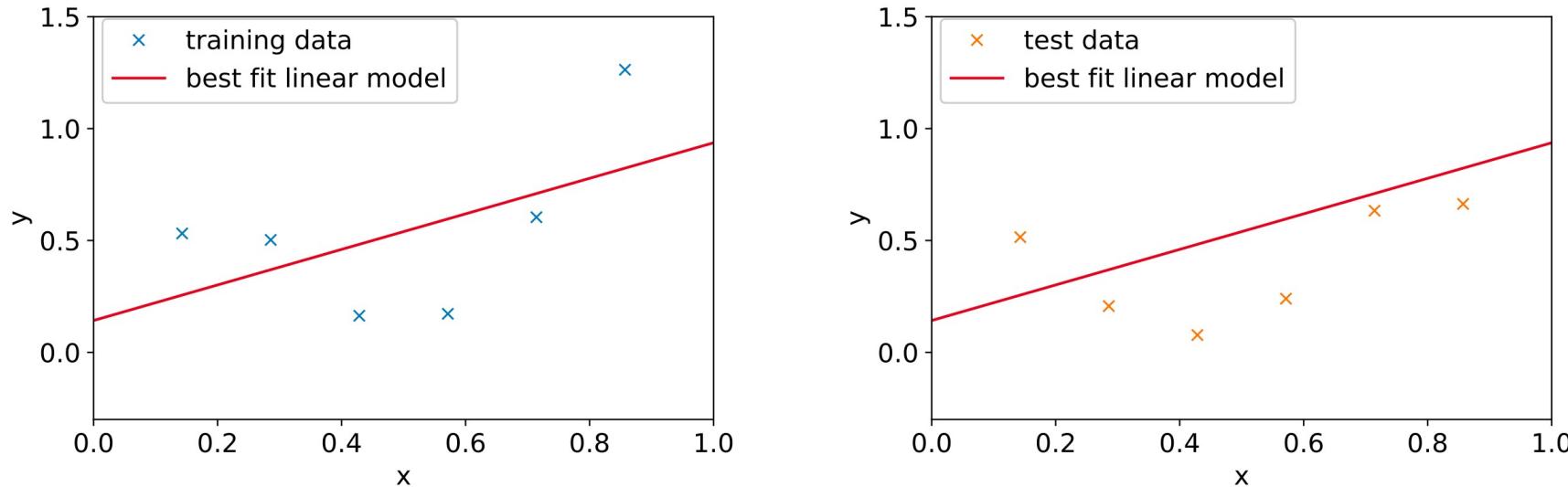


Figure 8.2: The best fit linear model has large training and test errors.

- The true relationship between y and x is not linear
- Any linear model is far away from the true function
- The training error is large, underfitting

How about fitting a linear model? (cont'd)

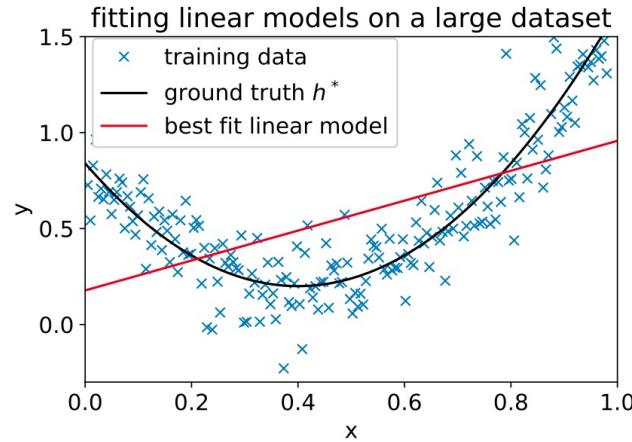


Figure 8.3: The best fit linear model on a much larger dataset still has a large training error.

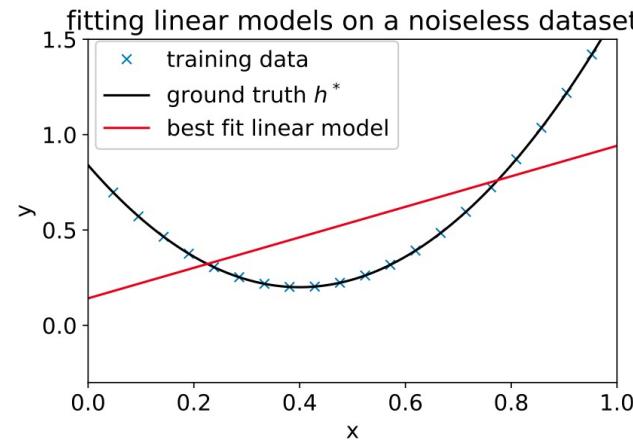


Figure 8.4: The best fit linear model on a noiseless dataset also has a large training/test error.

- Fundamental bottleneck: linear model family's inability to capture the structure in the data
- Define **model bias**: the test error even if we were to fit it to a very (say, infinitely) large training dataset

How about a 5th-degree polynomial?

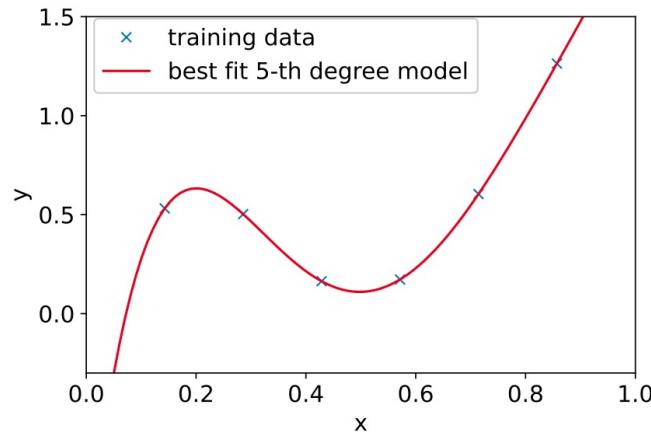
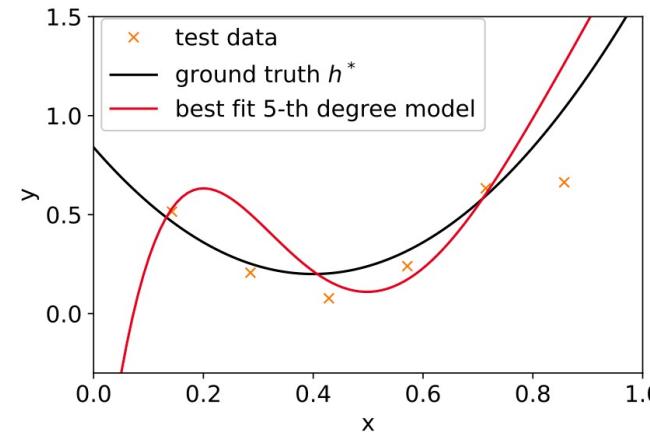
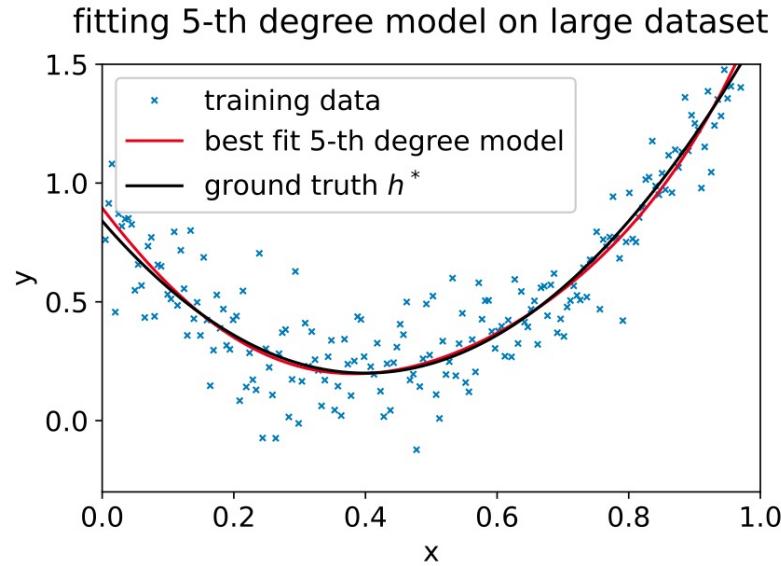


Figure 8.5: Best fit 5-th degree polynomial has zero training error, but still has a large test error and does not recover the the ground truth. This is a classic situation of overfitting.

- Predict well on the training set, does not work well on test examples

How about a 5th-degree polynomial? (cont'd)



- When the training set becomes huge, the model recovers the ground-truth

How about a 5th-degree polynomial? (cont'd)

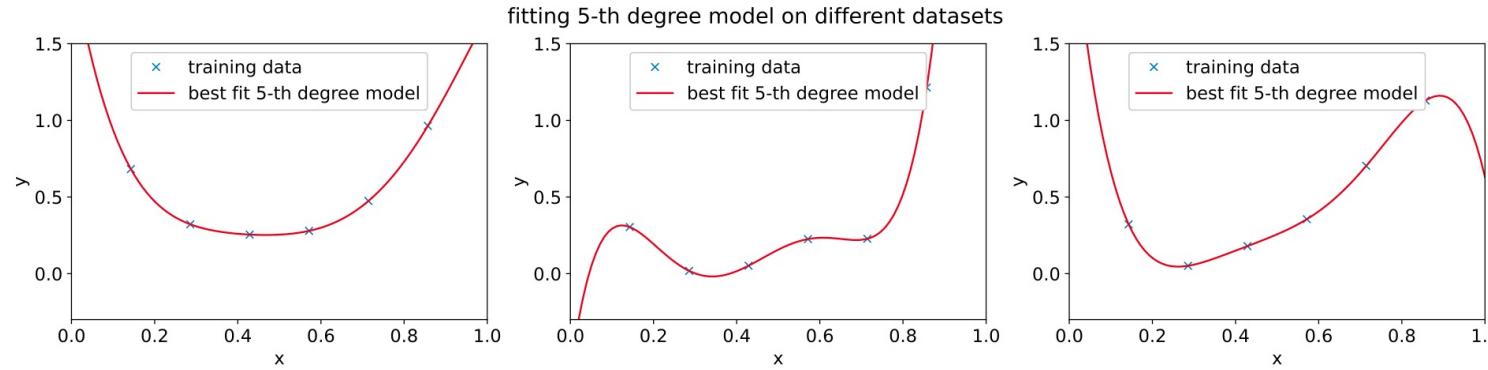


Figure 8.7: The best fit 5-th degree models on three different datasets generated from the same distribution behave quite differently, suggesting the existence of a large variance.

- Failure: fitting patterns in the data that happened to be present in the small, finite training set (NOT the real relationship between x and y)
- Define **variance**: the amount of variations **across models learnt on multiple different training datasets** (drawn from the same underlying distribution)

Bias-variance trade-off

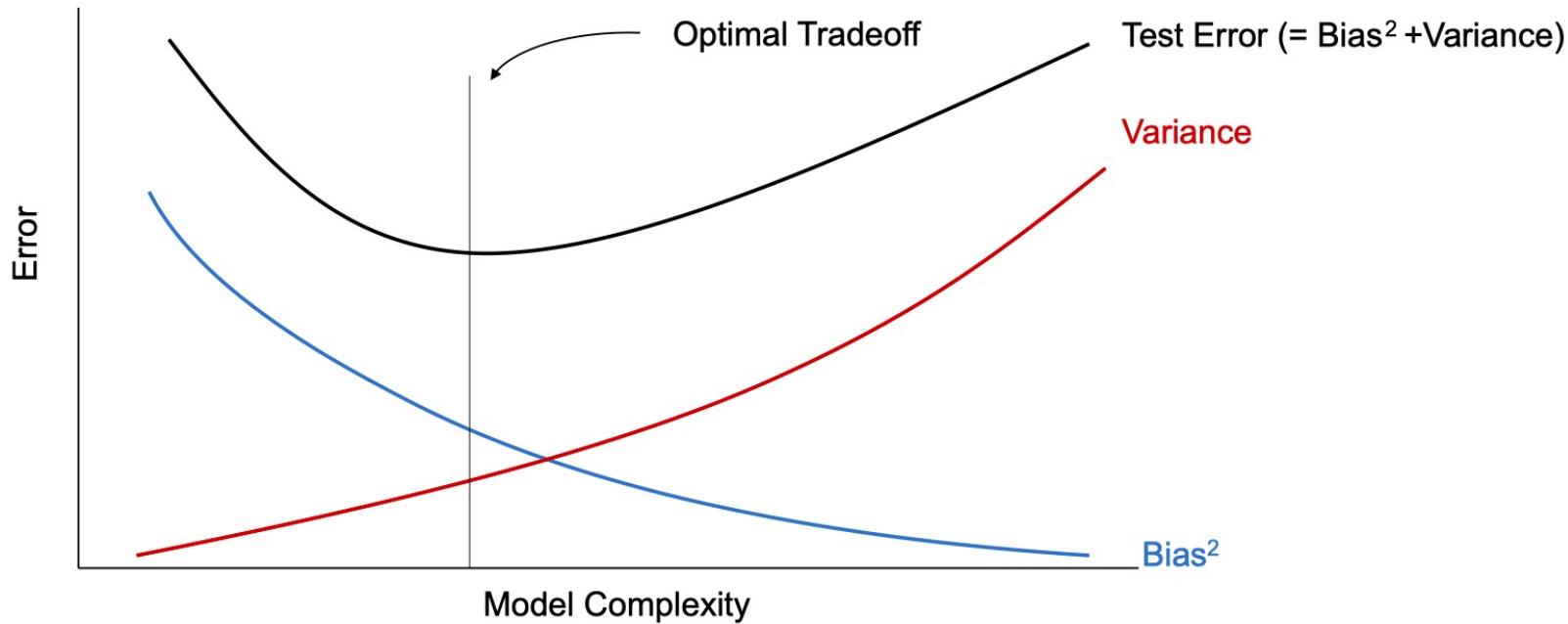


Figure 8.8: An illustration of the typical bias-variance tradeoff.

Bias-variance trade-off (cont'd)

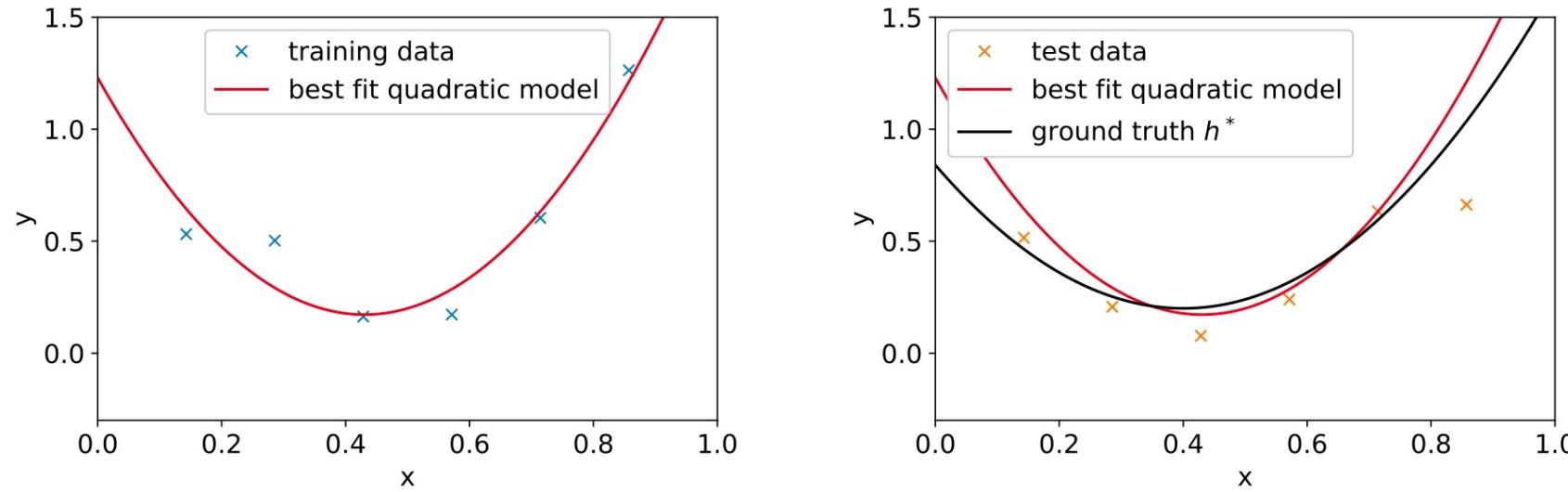


Figure 8.9: Best fit quadratic model has small training and test error because quadratic model achieves a better tradeoff.

A mathematical decomposition (for regression)

Problem setting: regression

- Draw a training dataset $S = \{x^{(i)}, y^{(i)}\}_{i=1}^n$ such that $y^{(i)} = h^*(x^{(i)}) + \xi^{(i)}$ where $\xi^{(i)} \in N(0, \sigma^2)$.
- Train a model on the dataset S , denoted by \hat{h}_S .
- Take a test example (x, y) such that $y = h^*(x) + \xi$ where $\xi \sim N(0, \sigma^2)$, and measure the expected test error (averaged over the random draw of the training set S and the randomness of ξ)

$$\text{MSE}(x) = \mathbb{E}_{S, \xi}[(y - h_S(x))^2] \quad (8.2)$$

Decomposition

- MSE(x) = $\mathbb{E}[(y - h_S(x))^2] = \mathbb{E}[(\xi + (h^*(x) - h_S(x)))^2]$
= $\mathbb{E}[\xi^2] + \mathbb{E}[(h^*(x) - h_S(x))^2]$
= $\sigma^2 + \mathbb{E}[(h^*(x) - h_S(x))^2]$
- Define $h_{avg}(x) = \mathbb{E}_S[h_S(x)]$
 - The model obtained by drawing an infinite number of datasets, training on them, and averaging their predictions on x
- MSE(x) = $\sigma^2 + \mathbb{E}[(h^*(x) - h_S(x))^2]$
= $\sigma^2 + (h^*(x) - h_{avg}(x))^2 + \mathbb{E}[(h_{avg} - h_S(x))^2]$
= $\underbrace{\sigma^2}_{\text{unavoidable}} + \underbrace{(h^*(x) - h_{avg}(x))^2}_{\triangleq \text{bias}^2} + \underbrace{\mathbb{E}[(h_{avg} - h_S(x))^2]}_{\triangleq \text{variance}}$

The double descent phenomenon

Observation

- Previous works show that

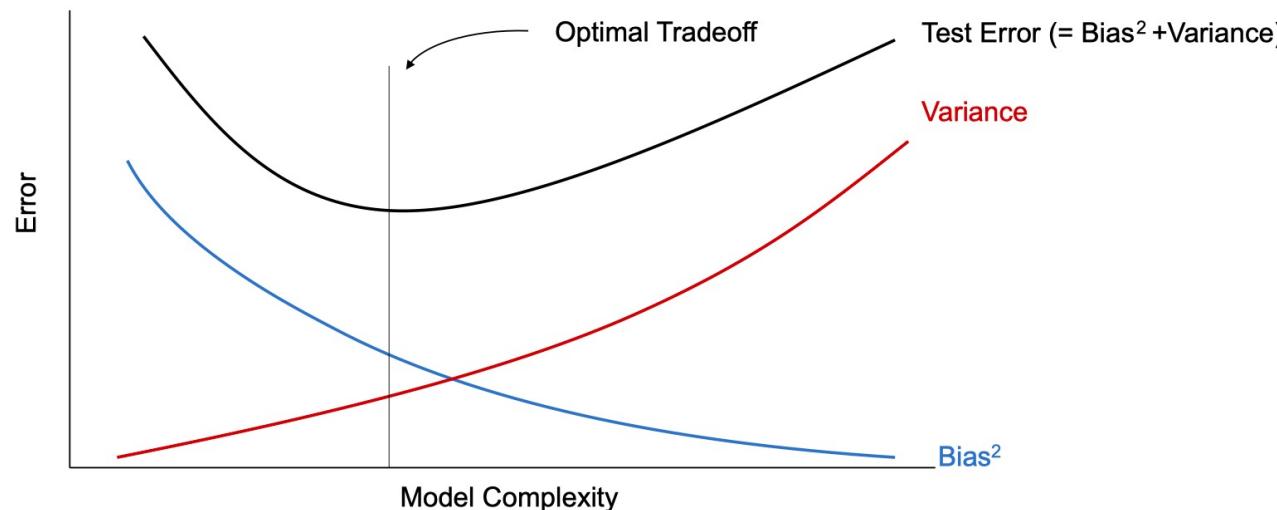
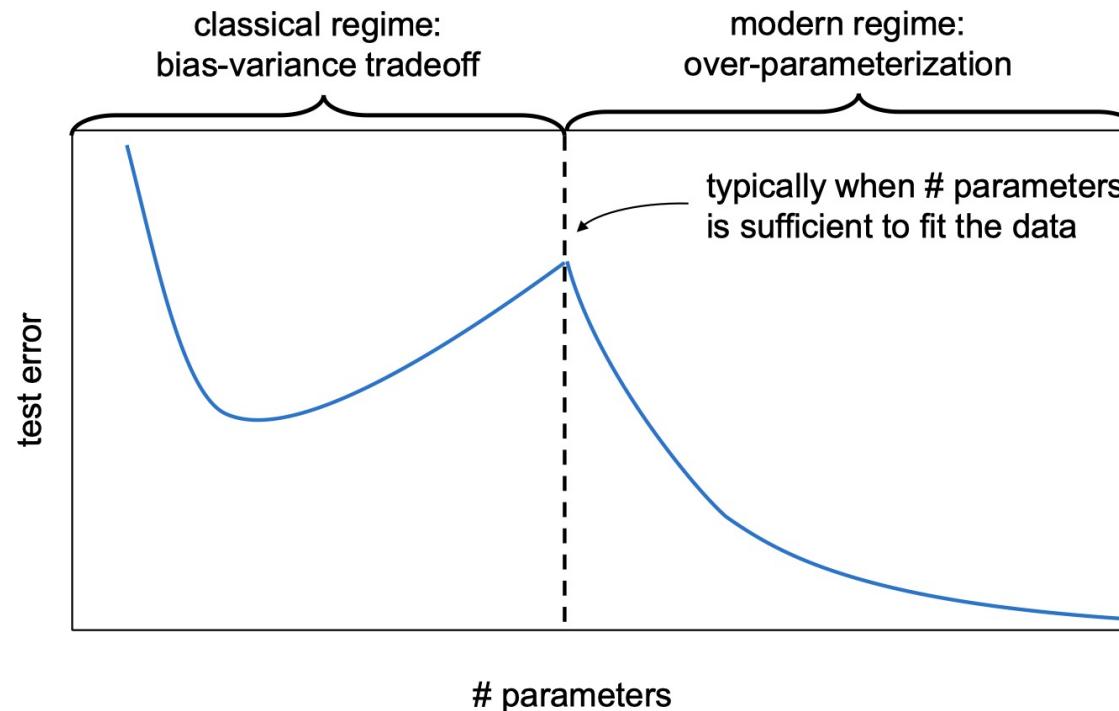


Figure 8.8: An illustration of the typical bias-variance tradeoff.

- Interestingly, the bias-variance tradeoff curves or the test error curves do not universally follow the shape

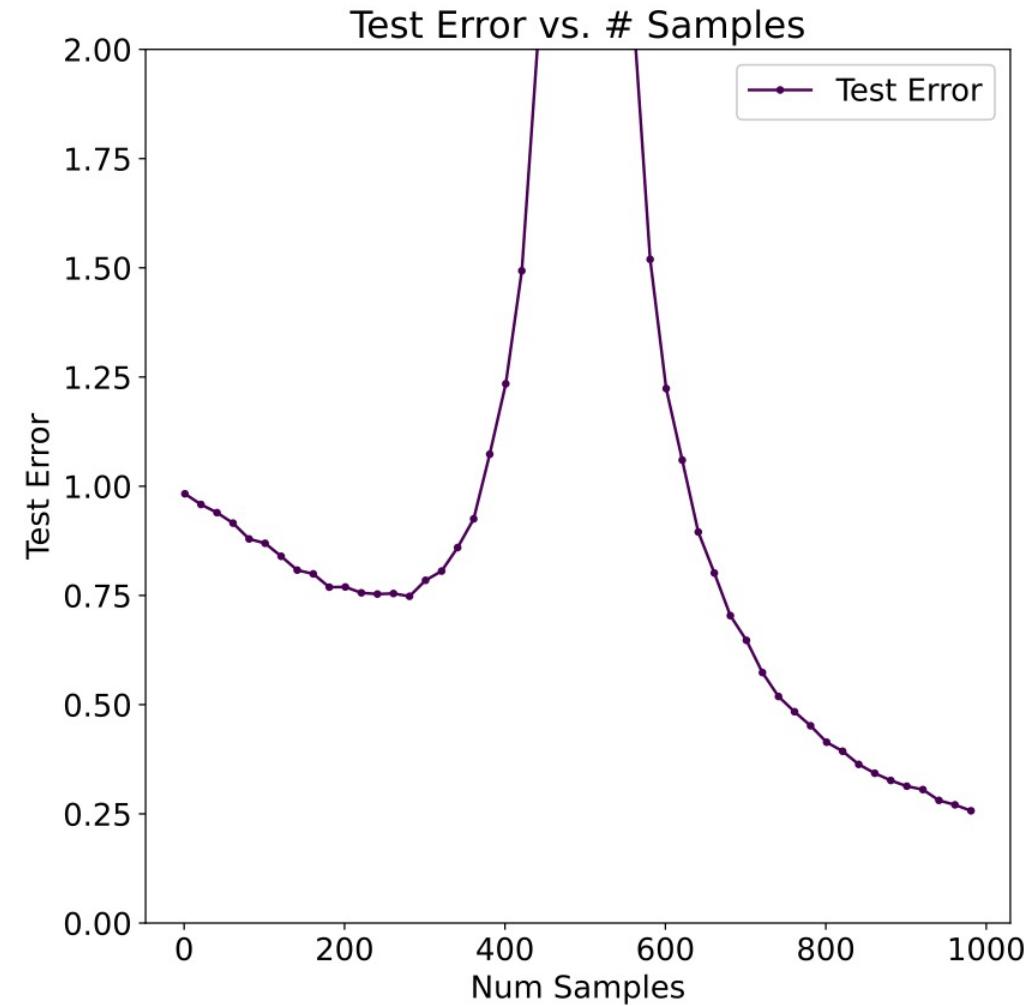
Model-wise double descent

- Recent works demonstrated that the test error can present a “double descent” phenomenon in a range of machine learning models including linear models and deep neural networks



Sample-wise double descent

- Recent work observes that the test error is **not monotonically decreasing** when the sample size increases
 - The test error first decreases
 - Then increases and peaks around when the number of examples is similar to the number of parameters ($n \approx d$)
 - And then decreases again
- Sample-wise double descent and model-wise double descent are essentially describing similar phenomena—the test error is peaked when $n \approx d$

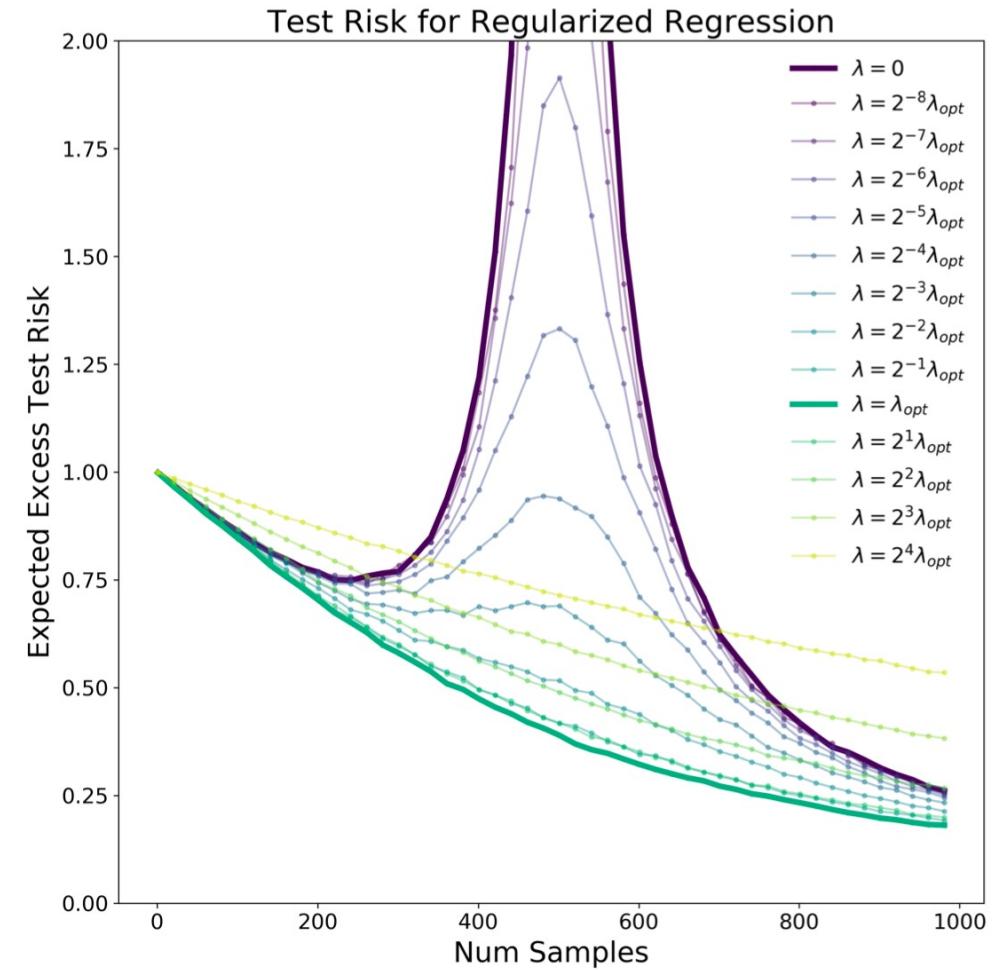


Explanation

- The observation illustrates that
 - Existing training algorithms evaluated in these experiments are far from optimal when $n \approx d$
- How to be better?
 - Tossing away some examples and run the algorithms with a smaller sample size to steer clear of the peak
 - With an optimally-tuned regularization, the test error in the $n \approx d$ regime can be dramatically improved

Regularization

- Using the optimal regularization parameter λ (optimally tuned for each n , shown in green solid curve) mitigates double descent

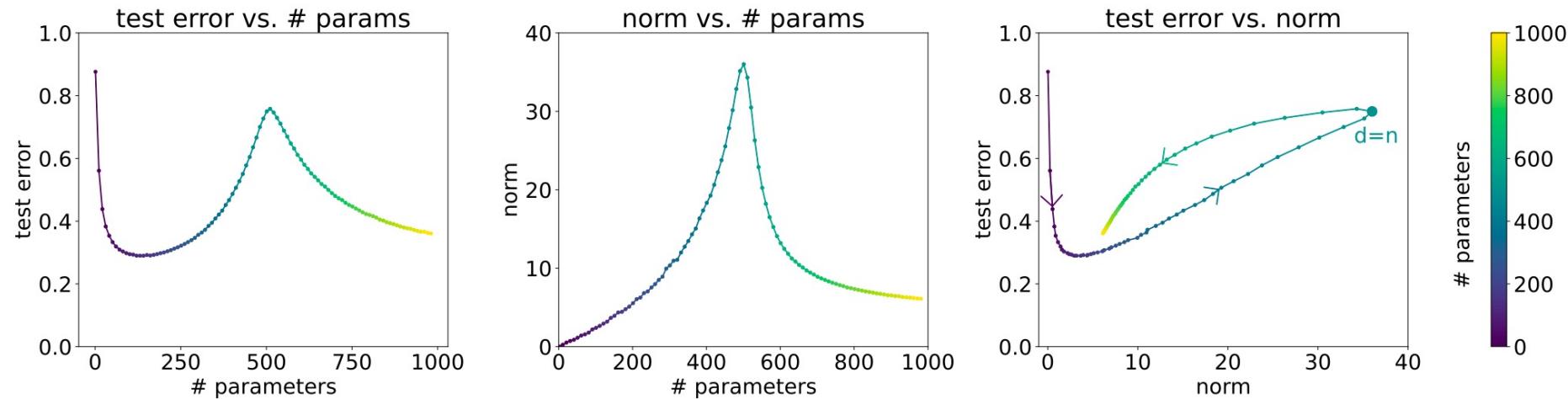


Explanation for overparameterization

- A typical explanation
 - Commonly-used optimizers such as gradient descent provide an implicit regularization effect
 - Intuition: even in the overparameterized regime and with an unregularized loss function, the model is still implicitly regularized, and thus exhibits a better test performance than an arbitrary solution that fits the data.
 - For example: GD with zero initialization finds the minimum norm solution that fits the data (in-stead of an arbitrary solution that fits the data)

Complexity measure of the model

- The double descent phenomenon has been observed when the model complexity is measured by the number of parameters
- It is unclear if and when the number of parameters is the best complexity measure of a model



Sample complexity bounds

Objective

- Some questions
 - Can we relate error on the training set to generalization error?
 - Can we make formal the bias/variance tradeoff that was just discussed?
 - Are there conditions under which we can actually prove that learning algorithms will work well?

Useful lemmas

- **Lemma.** (The union bound). Let A_1, A_2, \dots, A_k be k different events (that may not be independent). Then

$$P(A_1 \cup \dots \cup A_k) \leq P(A_1) + \dots + P(A_k).$$

- **Lemma.** (Hoeffding inequality) Let Z_1, \dots, Z_n be n independent and identically distributed (iid) random variables drawn from a $\text{Bernoulli}(\phi)$ distribution. I.e., $P(Z_i = 1) = \phi$, and $P(Z_i = 0) = 1 - \phi$. Let $\hat{\phi} = (1/n) \sum_{i=1}^n Z_i$ be the mean of these random variables, and let any $\gamma > 0$ be fixed. Then

$$P(|\phi - \hat{\phi}| > \gamma) \leq 2 \exp(-2\gamma^2 n)$$

Problem setting

- To simplify, consider the classification problem with $y \in \{0,1\}$
- Training set $S = \{(x^i, y^i); i = 1, 2, \dots, n\}$, drawn iid from \mathcal{D}
- For hypothesis h , define training error (empirical risk/error)

$$\hat{\varepsilon}(h) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}\{h(x^{(i)}) \neq y^{(i)}\}$$

- Define the generalization error $\varepsilon(h) = P_{(x,y) \sim \mathcal{D}}(h(x) \neq y)$

One of PAC assumption: training and testing set are from the same \mathcal{D}

Problem setting (cont'd)

- Consider the linear classification $h_\theta(x) = 1\{\theta^\top x \geq 0\}$
- Objective: minimize the training error

$$\hat{\theta} = \arg \min_{\theta} \hat{\varepsilon}(h_\theta)$$
$$\hat{h} = h_{\hat{\theta}}$$

empirical risk
minimization

- In learning theory, it will be useful to abstract away from the specific parameterization of hypotheses
- Define the hypothesis class \mathcal{H} , for linear classification

$$\mathcal{H} = \{h_\theta : h_\theta(x) = 1\{\theta^\top x \geq 0\}, \theta \in \mathbb{R}^{d+1}\}$$

Problem setting (cont'd)

- ERM becomes finding $\hat{h} = \arg \min_{h \in \mathcal{H}} \hat{\varepsilon}(h)$
- For simplicity, first consider the finite hypothesis set

$$\mathcal{H} = \{h_1, \dots, h_k\}$$

- Now, show the guarantee for the generalization error of \hat{h}
 - 1. $\forall h, \hat{\varepsilon}(h)$ is a reliable estimate of $\varepsilon(h)$
 - 2. \hat{h} guarantees good generalization error

Guarantee for a fixed hypothesis function

- Fix any hypothesis function $h_i \in \mathcal{H}$
- Define $Z_j = 1\{h_i(x^j) \neq y^j\}$
- The training error is

$$\hat{\varepsilon}(h_i) = \frac{1}{n} \sum_{j=1}^n Z_j$$

- The empirical mean of n random variables with expectation $\varepsilon(h_i)$
- Applying Hoeffding inequality,

$$P(|\varepsilon(h_i) - \hat{\varepsilon}(h_i)| > \gamma) \leq 2 \exp(-2\gamma^2 n)$$

Guarantee for any hypothesis function

- $$\begin{aligned} P(\exists h \in \mathcal{H}. |\varepsilon(h_i) - \hat{\varepsilon}(h_i)| > \gamma) &= P(A_1 \cup \dots \cup A_k) \\ &\leq \sum_{i=1}^k P(A_i) \\ &\leq \sum_{i=1}^k 2 \exp(-2\gamma^2 n) \\ &= 2k \exp(-2\gamma^2 n) \end{aligned}$$
- Thus
$$\begin{aligned} P(\neg \exists h \in \mathcal{H}. |\varepsilon(h_i) - \hat{\varepsilon}(h_i)| > \gamma) &= P(\forall h \in \mathcal{H}. |\varepsilon(h_i) - \hat{\varepsilon}(h_i)| \leq \gamma) \\ &\geq 1 - 2k \exp(-2\gamma^2 n) \end{aligned}$$

Corollaries

- How large must n be before we can guarantee that with probability at least $1 - \delta$, training error will be within γ of generalization error? (sample complexity)
- What is the distance between the training error and generalization error with training set size n and confidence δ ?

Guarantee for the **output** hypothesis function

- Recall $\hat{h} = \arg \min_{h \in \mathcal{H}} \hat{\varepsilon}(h)$
- Define the best hypothesis is $h^* = \arg \min_{h \in \mathcal{H}} \varepsilon(h)$
- Then
$$\begin{aligned} \varepsilon(\hat{h}) &\leq \hat{\varepsilon}(\hat{h}) + \gamma \\ &\leq \hat{\varepsilon}(h^*) + \gamma \\ &\leq \varepsilon(h^*) + 2\gamma \end{aligned}$$
- If uniform convergence occurs, then the generalization error of h is at most 2γ worse than the best possible hypothesis in \mathcal{H} !

Theorem of generalization error

- **Theorem.** Let $|\mathcal{H}| = k$, and let any n, δ be fixed. Then with probability at least $1 - \delta$, we have that

$$\varepsilon(\hat{h}) \leq \left(\min_{h \in \mathcal{H}} \varepsilon(h) \right) + 2 \sqrt{\frac{1}{2n} \log \frac{2k}{\delta}}.$$

- **Explanation of bias/variance**
 - If we switch to a larger function class $\mathcal{H}' \supseteq \mathcal{H}$
 - The first term decreases: lower bias
 - The second term increases as k increases: higher variance

Corollary of sample complexity

- **Corollary.** Let $|\mathcal{H}| = k$, and let any δ, γ be fixed. Then for $\varepsilon(\hat{h}) \leq \min_{h \in \mathcal{H}} \varepsilon(h) + 2\gamma$ to hold with probability at least $1 - \delta$, it suffices that

$$\begin{aligned} n &\geq \frac{1}{2\gamma^2} \log \frac{2k}{\delta} \\ &= O\left(\frac{1}{\gamma^2} \log \frac{k}{\delta}\right), \end{aligned}$$

Extension to infinite \mathcal{H} : Intuition

- Usually the hypothesis set is infinite
 - For example, the linear function set contains a infinite number of parameters
- Suppose \mathcal{H} is parameterized by d real numbers
- The computer uses 64 bits to represent a floating point number
- \mathcal{H} contains 2^{64d} different hypotheses
- Existing results show that with fixed γ, δ

$$n \geq O\left(\frac{1}{\gamma^2} \log \frac{2^{64d}}{\delta}\right) = O\left(\frac{d}{\gamma^2} \log \frac{1}{\delta}\right) = O_{\gamma, \delta}(d)$$

VC dimension

- **Shatter**

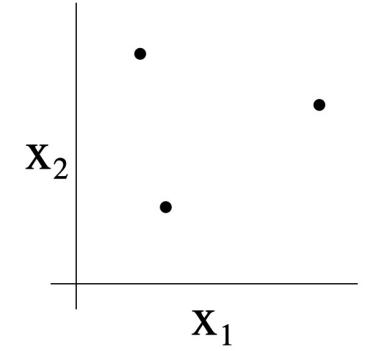
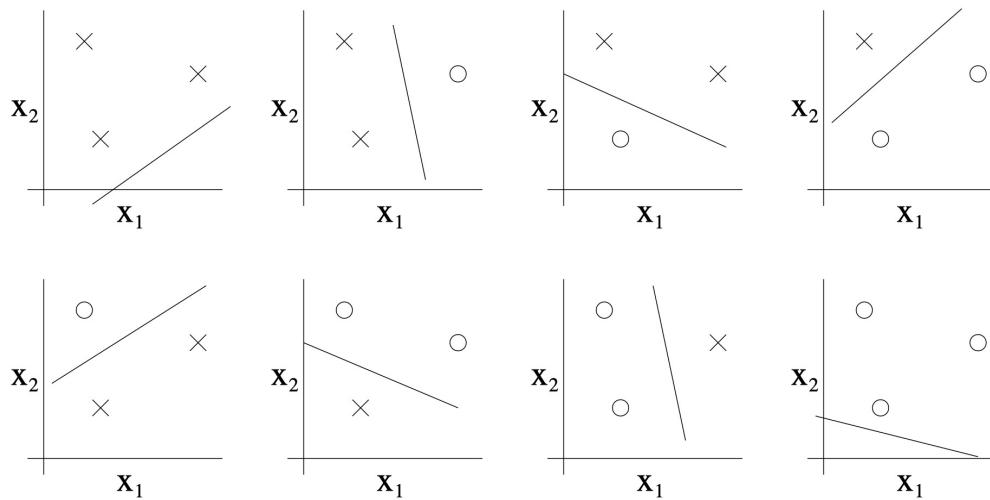
Given a set $S = \{x^{(i)}, \dots, x^{(D)}\}$ (no relation to the training set) of points $x^{(i)} \in \mathcal{X}$, we say that \mathcal{H} **shatters** S if \mathcal{H} can realize any labeling on S . I.e., if for any set of labels $\{y^{(1)}, \dots, y^{(D)}\}$, there exists some $h \in \mathcal{H}$ so that $h(x^{(i)}) = y^{(i)}$ for all $i = 1, \dots, D$.

- **VC dimension**

Given a hypothesis class \mathcal{H} , we then define its **Vapnik-Chervonenkis dimension**, written $\text{VC}(\mathcal{H})$, to be the size of the largest set that is shattered by \mathcal{H} . (If \mathcal{H} can shatter arbitrarily large sets, then $\text{VC}(\mathcal{H}) = \infty$.)

VC dimension: illustration

- Can the set \mathcal{H} of linear classifiers in two dimensions shatter the set below?
- For any labeling, \mathcal{H} can correctly classify



VC dimension: illustration (cont'd)

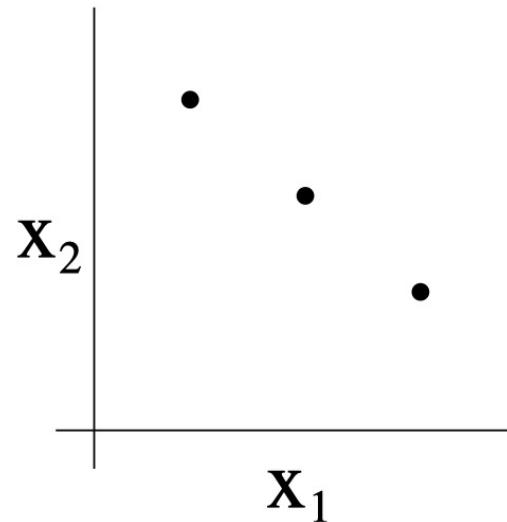
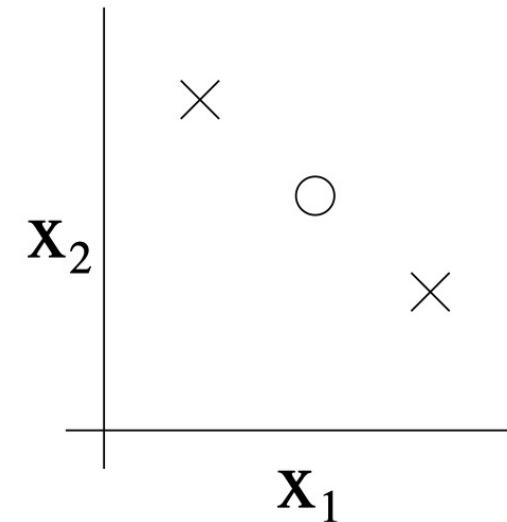
- How about 4 points?

VC dimension: illustration (cont'd)

- How about 4 points?
 - No
- Thus, the largest set that \mathcal{H} can shatter is of size 3, and hence $\text{VC}(\mathcal{H}) = 3$.

VC dimension: illustration (cont'd)

- In order to prove that $VC(\mathcal{H})$ is at least D , we need to show only that there's **at least one** set of size D that H can shatter (not every set of size D)



Convergence results

- **Theorem.** Let \mathcal{H} be given, and let $\mathbf{D} = \text{VC}(\mathcal{H})$. Then with probability at least $1 - \delta$, we have that for all $h \in \mathcal{H}$,

$$|\varepsilon(h) - \hat{\varepsilon}(h)| \leq O \left(\sqrt{\frac{\mathbf{D}}{n} \log \frac{n}{\mathbf{D}}} + \frac{1}{n} \log \frac{1}{\delta} \right).$$

Thus, with probability at least $1 - \delta$, we also have that:

$$\varepsilon(\hat{h}) \leq \varepsilon(h^*) + O \left(\sqrt{\frac{\mathbf{D}}{n} \log \frac{n}{\mathbf{D}}} + \frac{1}{n} \log \frac{1}{\delta} \right).$$

Usually the VC dimension is roughly linear in the number of parameters

- **Corollary.** For $|\varepsilon(h) - \hat{\varepsilon}(h)| \leq \gamma$ to hold for all $h \in \mathcal{H}$ (and hence $\varepsilon(\hat{h}) \leq \varepsilon(h^*) + 2\gamma$) with probability at least $1 - \delta$, it suffices that $n = O_{\gamma, \delta}(\mathbf{D})$.

Outline

- Intuition
- Bias-variance tradeoff
- The double descent phenomenon
 - Model-wise double descent
 - Sample-wise double descent
- Sample complexity bounds
 - Finite hypothesis class
 - Infinite hypothesis class