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Outline

§ Intuition
§ Bias-variance tradeoff
§ The double descent phenomenon
§ Sample complexity bounds



Intuition
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Intuition

§ Recall in previous classes
§ We typically learn a model ℎ! by minimizing the training loss/error

§ 𝐽! =
"
#
∑$%"# ℎ! 𝑥 $ − 𝑦 $ &

§ This is not the ultimate goal

§ The ultimate goal
§ Sample a test data from the test distribution 𝒟
§ Measure the model’s error on the test data (test loss/error)

§ Can be approximated by the average error on many sampled test examples



Challenges

§ The test examples are unseen
§ Even though the training set is sampled from the same distribution 𝒟, it can not 

guaranteed that  the test error is close to the training error
§ Minimizing training error may not lead to a small test error

§ Important concepts
§ Overfitting: the model predicts accurately on the training dataset but doesn’t 

generalize well to other test examples
§ Underfitting: the training error is relatively large (typically the test error is also 

relatively large)

§ How the test error is influenced by the learning procedure, 
especially the choice of model parameterizations? 



Bias-variance tradeoff
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Problem setting

§ The training inputs are randomly chosen
§ The outputs are generated by

§ ℎ∗(*): a quadratic function
§ 𝜉($)~𝑁(0, 𝜎&): noise

§ Our goal is to recover the function ℎ∗(#)



How about fitting a linear model?

§ The true relationship between y and x is not linear
§ Any linear model is far away from the true function
§ The training error is large, underfitting



How about fitting a linear model? (cont’d)

§ Fundamental bottleneck: linear model family’s inability to capture the 
structure in the data

§ Define model bias: the test error even if we were to fit it to a very (say, 
infinitely) large training dataset



How about a 5th-degree polynomial?

§ Predict well on the training set, does not work well on test examples



How about a 5th-degree polynomial? (cont’d)

§ When the training set becomes huge, the model recovers the ground-
truth



How about a 5th-degree polynomial? (cont’d)

§ Failure: fitting patterns in the data that happened to be present in the 
small, finite training set (NOT the real relationship between x and y)

§ Define variance: the amount of variations across models learnt on multiple 
different training datasets (drawn from the same underlying distribution)



Bias-variance trade-off



Bias-variance trade-off (cont’d)



A mathematical decomposition (for regression)
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Problem setting: regression

§

§

§



Decomposition

§

§ Define ℎ"#$ 𝑥 = 𝔼%[(ℎ%(𝑥))]
§ The model obtained by drawing an infinite number of datasets, training 

on them, and averaging their predictions on x

§



The double descent phenomenon
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Observation

§ Previous works show that

§ Interestingly, the bias-variance tradeoff curves or the test error 
curves do not universally follow the shape 



Model-wise double descent

§ Recent works demonstrated that the test error can present a 
“double descent” phenomenon in a range of machine learning 
models including linear models and deep neural networks



Sample-wise double descent

§ Recent work observes that the test error 
is not monotonically decreasing when 
the sample size increases
§ The test error first decreases
§ Then increases and peaks around when the 

number of examples is similar to the number 
of parameters (𝑛 ≈ 𝑑)

§ And then decreases again

§ Sample-wise double descent and model-wise 
double descent are essentially describing 
similar phenomena—the test error is peaked 
when 𝑛 ≈ 𝑑



Explanation

§ The observation illustrates that
§ Existing training algorithms evaluated in these experiments are far from 

optimal when 𝑛 ≈ 𝑑
§ How to be better?

§ Tossing away some examples and run the algorithms with a smaller 
sample size to steer clear of the peak

§ With an optimally-tuned regularization, the test error in the 𝑛 ≈ 𝑑
regime can be dramatically improved 



Regularization

§ Using the optimal regularization 
parameter 𝜆 (optimally tuned 
for each 𝑛, shown in green solid 
curve) mitigates double descent 



Explanation for overparameterization

§ A typical explanation
§ Commonly-used optimizers such as gradient descent provide an implicit 

regularization effect
§ Intuition: even in the overparameterized regime and with an 

unregularized loss function, the model is still implicitly regularized, and 
thus exhibits a better test performance than an arbitrary solution that 
fits the data.

§ For example: GD with zero initialization finds the minimum norm 
solution that fits the data (in-stead of an arbitrary solution that fits the 
data)



Complexity measure of the model

§ The double descent phenomenon has been observed when the 
model complexity is measured by the number of parameters

§ It is unclear if and when the number of parameters is the best 
complexity measure of a model



Sample complexity bounds
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Objective

§ Some questions
§ Can we relate error on the training set to generalization error?
§ Can we make formal the bias/variance tradeoff that was just discussed?
§ Are there conditions under which we can actually prove that learning 

algorithms will work well?



Useful lemmas

§

§



Problem setting

§ To simplify, consider the classification problem with 𝑦 ∈ {0,1}
§ Training set 𝑆 = { 𝑥& , 𝑦& ; 𝑖 = 1,2, … , 𝑛}, drawn iid from 𝒟

§ For hypothesis ℎ, define training error (empirical risk/error)

§ Define the generalization error 

One of PAC assumption: training 
and testing set are from the same D



§ Consider the linear classification ℎ' 𝑥 = 1{𝜃(𝑥 ≥ 0}
§ Objective: minimize the training error

§ In learning theory, it will be useful to abstract away from the 
specific parameterization of hypotheses

§ Define the hypothesis class ℋ, for linear classification

Problem setting (cont’d)

empirical risk 
minimization



Problem setting (cont’d)

§ ERM becomes finding

§ For simplicity, first consider the finite hypothesis set

§ Now, show the guarantee for the generalization error of <ℎ
§ 1. ∀ℎ, ̂𝜀(ℎ) is a reliable estimate of 𝜀 ℎ
§ 2. 8ℎ guarantees good generalization error



Guarantee for a fixed hypothesis function 

§ Fix any hypothesis function ℎ& ∈ ℋ
§ Define 𝑍) = 1 ℎ& 𝑥) ≠ 𝑦)

§ The training error is 

§ The empirical mean of 𝑛 random variables with expectation
§ Applying Hoeffding inequality, 



Guarantee for any hypothesis function 

§

§ Thus   



Corollaries

§ How large must 𝑛 be before we can guarantee that with 
probability at least 1 − 𝛿, training error will be within 𝛾 of 
generalization error? (sample complexity)

§ What is the distance between the training error and 
generalization error with training set size 𝑛 and confidence 𝛿?



Guarantee for the output hypothesis function 

§ Recall 

§ Define the best hypothesis is  

§ Then

§ If uniform convergence occurs, then the generalization error of ℎ
is at most 2𝛾 worse than the best possible hypothesis in ℋ!   



Theorem of generalization error

§

§ Explanation of bias/variance
§ If we switch to a larger function class ℋ′ ⊇ ℋ
§ The first term decreases: lower bias
§ The second term increases as 𝑘 increases: higher variance



Corollary of sample complexity

§



Extension to infinite ℋ: Intuition 

§ Usually the hypothesis set is infinite
§ For example, the linear function set contains a infinite number of 

parameters

§ Suppose ℋ is parameterized by 𝑑 real numbers
§ The computer uses 64 bits to represent a floating point number
§ ℋ contains 2*+, different hypotheses
§ Existing results show that with fixed 𝛾, 𝛿



VC dimension

§ Shatter

§ VC dimension



VC dimension: illustration

§ Can the set ℋ of linear classifiers in two dimensions shatter the 
set below? 

§ For any labeling, ℋ can correctly classify



VC dimension: illustration (cont’d)

§ How about 4 points?



VC dimension: illustration (cont’d)

§ How about 4 points?
§ No

§ Thus, the largest set that ℋ can shatter is of size 3, and hence 
VC(ℋ) = 3. 



VC dimension: illustration (cont’d)

§ In order to prove that VC(ℋ) is at least D, we need to show only 
that there’s at least one set of size D that H can shatter (not 
every set of size D)



Convergence results

§

§

Usually the VC 
dimension is roughly 
linear in the number of 
parameters
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